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ELECTRONIC WAVE FUNCTIONS

XI. A CALCULATION OF EIGHT VARIATIONAL WAVE
FUNCTIONS FOR Cl, CI7, S AND S~

By S. F. BOYS anp V. E. PRICE
Department of Theoretical Chemistry, University of Cambridge

(Communicated by D. R. Hartree, F.R.S.—Received 18 June 1953)
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The variational co-detor method has been applied to calculate wave functions and energies for the
P? and S2 states of Cl, the S! state of C17, the P3, D!, S! and P} states of S and the P2 state of ™.
This is the first application of the method to atoms of the second chemical period, and is thus an
application to considerably more complicated circumstances than have been previously examined.
Except for the wave functions of the P2 state of Cl and the S! state of C1~ there are no records of
any previous approximations of comparable accuracy to these wave functions, and no comparable
predictions for any of the energy values. The introduction of relativistic corrections has been
investigated and incorporated in this calculation. It was also found possible to adapt several
sections of the calculation to the automatic calculating machine, the EDSAC, which has performed
a considerable amount of the computation.

OF

1. INTRODUCTION

The only method known at present for calculating atomic wave functions and their energies
to unlimited accuracy is the co-detor variational method. This method has previously
been applied only to atoms of the first chemical period, and the calculations required
considerable effort both in theoretical analysis and in computation. Here some corre-
sponding calculations for atoms of the second chemical period are reported. In these
calculations some new developments have been made so that expenditure of effort has only
been about the same or less than that required for the calculations for the first period. To
report these developments it is convenient to assume the general theory with the notation
and nomenclature as specified in part X. Also, the numerical evaluation and the checking
of the H,, matrices have been performed by using the methods described there, and no
further description of this part of the calculation will be given.

The first new aspect which needed examination was the evaluation of the projective
reduction formulae. Although the formulae derived for the atoms of the first chemical
period are also used for the atoms of the second chemical period, it is necessary to have a
completely new range of these, which may be regarded as corresponding to integrals in
which both the 2s, 2p and the 3s, 3p shells are involved. These have been evaluated for the
whole range of the 8p to 3% period in accordance with the general theory of parts III to VI.
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452 S. F. BOYS AND V. E. PRICE ON

The results of these necessary for the present calculations will be assumed here, and the
whole scheme of calculation reported on a later occasion. It may be noted that considera-
tions of the labour involved in projective reduction calculations for atoms of the second
chemical period to the present degree of approximation are no longer of much importance,
since the complete set of coefficients, which will also be used in calculations for atoms of
the third or higher periods with incomplete s, # shells, has now been found.

Secondly, since the EDSAC, the automatic electronic calculating machine built by
Wilkes, Renwick and others (1949), was very kindly put at our disposal soon after these
calculations were begun, it was considered desirable to construct programmes for carrying
out some of the laborious parts of the calculation by means of this machine. These have
been completely effective and may be regarded as practically indispensible for future
calculations on complicated atoms.

Thirdly, the relativistic corrections to Schrédinger’s equation for these atoms become
comparable with the present numerical accuracy and it was considered informative to
investigate the magnitude of these corrections and to develop a method for including them,
to the first order, in this type of calculation.

The calculation of the relativistic effects which is in effect a modification of the general
theory, will be examined first in §2, and then the EDSAC automatic computation pro-
cedures will be described in §3. Other detailed aspects of the numerical work will be
considered in § 4, and the resulting wave functions will be given in § 5. Finally, it is inter-
esting (§ 6) to review what deductions can be made from the present experience with regard
to the application of similar methods to other atoms and to molecules.

2. ,RELATIVISTIC CORRECTIONS

At present the exact relativistic wave equation for a system of many electrons is not
known, but the equation given by Breit (1929, 1930, 1932), which is based on the exact
Dirac equation (1927) for a single electron, and the modified Schrédinger equation derived
as an approximation to it, are generally accepted as accurate to the first relativistic order.
It has been assumed that the accuracy of this modified Schrédinger equation is sufficient
for the present investigation, and the extra terms in it which appear to be comparable with
the present standard of accuracy of the calculation of the wave functions, have been
evaluated.

It appears that the corrections to the Schrédinger Hamiltonian, which influence the
energy and wave functions of atoms most, are the single-electron operators corresponding
to mass change and the special s electron effect. Explicitly these are

a2
R =3 (mp0) = (VD)) 5 (1)
where p;(0) is the charge density at the nucleus expressed as a function of the co-ordinates
of the 7th electron, and 1/a is the velocity of light in atomic units, that is, a=15.

Since these are single-electron terms it is possible to compare the effect of them on the
energy of a wave function with the exact relativistic energy obtained from the Dirac
equation for a single electron. For this, consider a single electron in the (1s) state
of a hydrogen-like ion with nuclear charge Z. Let E be the energy of the Schrédinger
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Hamiltonian H, and E+ AE, be the energy of the perturbed Hamiltonian /- R. By treating
the term R as a small perturbation and expanding the perturbed wave function in terms of
the (ns) H-like unperturbed wave functions, then by the standard method one obtains the

result AE, — —3a2Z*—0-029a4Z5 1 0(a5Z%). (2)
The exact value of the energy of the electron E+ AE, was proved by Dirac to be given by
B a2Z2 -t
E—I—AEZ =a 2(1 —I—l—;ﬁ) —a 2,
Hence AE, = —1a?Z* —$5a* 25+ 0 (aSZ8). (3)

Thus it is seen that the main terms in AE; and AE, are the same. In the third column of
table 1 are given some of the values of AE; which can be used to estimate whether, according
to the accuracy expected in the calculation, any relativistic corrections should be included,
and in the fourth column are given some of the values of AE, —AF, which indicate the
reliability of the procedure of allowing for the relativistic effects by modifying the Schré-
dinger Hamiltonian with the term R.

TABLE 1. THE RELATIVISTIC CORRECTIONS TO THE ENERGY OF A (15) ELECTRON AS CALCU-
LATED BY THE APPROXIMATE BREIT FORMULA (AE)) AND BY THE EXACT DIrAc
FORMULA (AL,)

VA E AE, AE,—AFE,

6 — 18 —0-008 6 0

7 — 245 —0-0160 0

8 - 32 —0-0273 0

9 — 40'5 —0-0437 0
10 — 50 —0-066 7 0-0001
12 — 72 —0-1384 0-000 3
14 — 98 —0-256 5 0-000 7
16 —128 —0-4379 0-001 6
18 —162 —0-7019 0-003 2
20 —200 —1-070 9 0-006 1
25 —312-5 —2-6217 0-023 2
30 —450 —54546 0-069 3
35 —612-5 —9-994 2 0-174 8

However, in addition to the correction to the energy of the electron, it is important to
test the change in the shape of the wave function caused by the corrections. This can
be estimated for a H-like ion by using an approximate wave function ./(u*/m) e~ for
the ground state and determining the best value of u for the Hamiltonian H+R by the
variational method.

H+R = —§V2—Z[r+a*mp — 3a*(V?)? (4)
and (¥ | H+R | ¢) = $u>—Zu+4a*Zu® — §a’u
is the energy of the trial wave function. The best value of « is given by
u—2Z+3%a’Zu® —%§au3 = 0,
which gives approximately
u = Z(1+a2Z? + 0(a*Z5), (5)

particular values of which are given in table 2.
57-2
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TaBLE 2. THE BEST PARAMETER VALUES FOR WAVE FUNCTIONS OF THE FORM
J(u3/m) e7* FOR H-LIKE IONS ALLOWING FOR RELATIVISTIC EFFECTS

VA u Z U
6 6-:012 16 16-218
7 7-018 18 18:311
8 8-027 20 20-426
9 9-039 25 25-833
10 10-053 30 31:439
12 12:092 35 37-284
14 14-146

Since the correction to the value of Z = 17 for chlorine is about 0-3 and is thus about the
same as the effect of the He-like repulsion for this Z, which is one of the essential effects
which the poly-detor method is used to treat quantitatively; and since the corresponding
energy lowering of two Ls electrons is about one atomic unit and so greater than other errors
of the calculation, it was decided to include the relativistic corrections in the calculations
of the atomic wave functions reported in this paper. The matrix elements of R were only
calculated for the elements involving the (1s) and the (1s’) functions since the matrix
elements of R involving the other s functions are very much smaller. The (1s") function is
used to correct the position of the (1s) shell and allow for radial correlation in this shell.

The formulae for the matrix elements of R can be deduced by elementary methods and
are as follows: 17 i — gy —

(Tm e~ ur l mp | T"C"W> - {ZZ ifm=n=— 0,

(rm e-ur ! (VZ)Z ! ¥ e—vr)

=m(m+1)n(n+1) T(m+n—4,u+v)—2(m+1) (n+1) (mo+nu) T(m~+n—3,u+v)
+[m(m+1) v2+n(n+1)u2—4(m+1) (n+1) w] T(m+n—2,u+v)
—2[(m+1) v+ (n+1) u]uwT(m+n—1,u+v) +u?2T(m+n,u+v), (7)
where T(x,y) = x!/y**L. (8)

(6)

0  otherwise;

3. THE cOMPUTATIONS PERFORMED BY THE EDSAC

In addition to the theoretical aspects of the present calculation the opportunity was taken
to work out automatic computation procedures which enabled some of the longest sections
of computation to be performed on the EDSAC. The present calculation would have been
just practicable without these methods, but their use saved considerable labour and they
are of considerable importance, since other calculations which would otherwise be pro-
hibitively laborious will be quite feasible by their use.

With a desk machine any calculation has to be resolved into a sequence of basic arith-
metical operations, and with an automatic machine this resolution has to be performed in
much greater detail. For example, with a desk machine explicit instructions would not have
to be given for any intermediate results to be written on paper, but with an automatic
machine there would have to be an explicit order which would specify the location where
a particular result would remain until required later. It is this sequence of orders, each
corresponding to a small basic step in the calculation, which constitutes the programme
for that calculation. The basic operations which are performed by the EDSAC have been
given by Wilkes (1949), and with this set of orders it is possible to construct a programme for
any numerical calculation however complicated.
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There are, however, two important limitations of automatic computation machines such
as the EDSAC, which have to be considered when any programme is being constructed.
The first is the limited storage. This storage consists of a certain number of locations, in
which are stored the orders of the programme, one to each location, and also the numerical
data of the calculation, as numbers of about ten decimal places each in two locations.
Although the number of available storage locations has been increased, at the time when this
calculation was performed the number of locations was only 512, and this significantly
influenced the programmes which were used in the calculation.

Secondly, unless special provision is made in the programme, all the numerical data must
be less than unity in modulus. There are a few general ways in which this problem can be
overcome, such as working with numbers stored in floating decimal form, that is, to specify
a number by two quantites ¢ and p the value of the number being a10#, where « is less than
unity in modulus and p is an integer, positive or negative. However, very often in any par-
ticular calculation there is a particular method which enables the EDSAC to complete the
calculation quicker than if some general method were used.

It is mainly these two general problems which make the task of constructing a programme
for most calculations quite complicated. Ifsuch a programme were going to be used only
once, in spite of the fact that the EDSAC performs the calculation much more quickly
than could be done with a desk machine, in many cases it would be doubtful if it were worth
while constructing the programme. However, in addition to the speed of the EDSAC,
there is a second very important advantage: when a programme has once been con-
structed it is punched on tape, and this tape and copies of it can be used for any number of
similar calculations with different numerical quantities, thus saving very much time. Thus,
although the EDSAC was very useful in the calculation of atomic wave functions reported
in this paper, it will be even more effective in future calculations of this type.

The first part of the calculation to be programmed, which had previously been the longest
part of the calculation, was the calculation of all the electrostatic integrals [¢,4, | 4,4,]%,
where ¢, are the orthonormal single-electron functions which are used in the calculation.
This is performed in two parts, first the calculation of all the elementary integrals
(7475 | 1c7p)k, where the functions 5, have just a single exponential term in their radial
factors, and then the necessary matrix multiplication corresponding to the linear com-
binations of functions 7, which form the functions ¢,. The special programme described
below was constructed for the elementary integrals, and a programme constructed by
Mr L. A. G. Dresel was used for the matrix multiplication.

The required integrals can be written in the form

‘]uv(m) n)k — [rm e~ur | el e—-vr]k

=Um+1—kn+2+ku,0)+Un+1—km+2+k v,u), (9)
where U(A, B, ” ’l)) _ fwdrl J’rler 7114 7‘129 e ur1—uvrz
0 0
(2
\ du ) u(u+tv) (10)

However, the numerical magnitude of these integrals varies over a very large range, which
is very inconvenient, especially for use with the EDSAC. Therefore certain multiples of
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the integrals, which are all of the order of magnitude unity, are calculated and allowance
is made for the additional factors in the stage of the matrix multiplication. Thus the actual
integrals which are used in the calculation are

‘Zw(m, n)k = C, C,uwt v+, (m, n)k, (11)
where C, = {J;;(n,n)°} % (12)
These J integrals are all less than or equal to unity, and are conveniently called non-
dimensional since they only depend on the ratio u/v.

An explicit formula is given for the quantities U(4, B, u,v) in equation (14), part II,
but instead of using this explicitly, it is more convenient to use a recurrence relation for
certain intermediate quantities g¢2,

g8 — (q42—71) g4 (B+r—1) ug®8/(u+v) (r=1,...,a+2;a=0,...,4—1), (13)
in terms of which the final value can be expressed by

4+1
U4, Bu,) =3, gt (14)
r=1
The recurrence relation is started with the single term g9%, which is a suitable multiple of
B
( —%) Zl—(«u—lik—v—)’ and the application of the recurrence relation (13) corresponds to the

differentiation with respect to « in (10).

In order that all the intermediate numbers occurring in the calculation should be less
than unity any integer p used in the calculation is replaced by 5. It can easily be seen that
if all the coefficients in (13) are replaced by sth of their true value then the final result -
will be much smaller than the correct one, and so if one continued to work with fractions
correct to just ten decimal places one would not have very many significant figures in the
result. Thus in order to obtain the results with the required accuracy of nine significant
decimal places, subroutines were constructed which enabled the arithmetic to be performed
to twenty decimal places.

The present programme, applicable for integral values of u and v less than 32 and values
of n and m less than 7, calculates the integrals in sets, in each of which the parameters
n, m, u and v take specified values, and £ takes all values such that 0<<k<n,m. It is con-
venient to calculate the integrals in such sets, and check them by anothe1 programme which
calculates, theoretically independently, the sum of the integrals in each set. To evaluate
a set of integrals it is only necessary to punch four tape symbols corresponding to the
specified values of n, m, u and v; and, up to the present, the average time taken to evaluate
such a set has been about 20s. This can be compared with 1 h which would be required on
a desk calculating machine, assuming that the coeflicients of the power series had been
evaluated previously. The present calculation required about 400 new J integrals, for which
the time saved by automatic computation is considerable.

4. THE CHOICE OF FUNCTIONS USED IN THE CALCULATION
As was stated in part X, there is not at present any systematic method of choosing the
initial single-electron functions from which the wave function is formed, although there is
a method of testing the quality of the initial choice fairly early in the calculation and of
examining how this may be improved if necessary. It was by this method that the single-
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electron functions given in table 3 were obtained, these being a second choice after the
first choice was found to be unsatisfactory.

TABLE 3. VALUES OF THE COEFFICIENTS, X, OF THE NORMALIZED
EXPONENTIAL TERMS IN THE SINGLE-ELECTRON FUNCTIONS ¢

¢, =X, X{(rmv e=urr | ymp e~uo7)}~Eypme @07

&s () (25) = (29) (35)
ym e—ur :
o e 1024 513 8 0-0 0-074 8170
~ e 0-037 551 5 0-0 0-002 742 3
o 7 e 3" — 0-3570296 1-0 —0-254736 5
< — e 0-0 0-0 1-028 406 6
5 (15) (25 (3)
e 88 e —16-370033 3 0-532 068 4 0-211720 4
— e’ 17-661 009 1 0-0195019 0-007 760 2
= O r e — 51390880 —2-837 459 4 —1-378616 6
o o rte" — 1-5893789 —0:477 3401 —3-8353768
=w r2e3r 4-144 318 2 30214304 2-007 955 5
::nn e 1-221 741 2 0-0 3-641768 7
4 ' '
S0 (3f) @) (3¢)
E = re 3" 0-243 637 5 —2-565671 8 —0-214 048 2
OE:) 5 rre-r 0-786 118 5 —1-664 124 5 —3-449787 8
8 %) r2e 3 0-052 292 7 3-100 882 4 0-745205 5
='<Zt rier 0-236 819 4 1-177739 4 3-374 8350
= (1) (24 (34"
re s 0-364 4019 0-0 0-0
rle" 0-074 9140 —0-214 484 8 1-0
re-12r 1-061 233 6 0-0 0-0
e 0-0 1-022 743 2 0-0
The choice of the original set of single-electron functions was made as follows. An
approximate estimate of the effective Coulomb field under which each electron moves can
be obtained by the rules given by Slater (1930). The results of this led to the use of ™%,
re~3 and r2 e~ for the main contributions to the radial factors of the functions representing
the (1s), (2s) and (2p), and (3s) and (3p) shells respectively. In order to allow for better
) fitting of the two outer shells, the additional terms 72e~% and 73 " were introduced, since
<« the use of r**1 e~ has approximately the same effect as a change in the value of « in 7 e~*".
- Because of the previous experience of calculations for He-like ions, e~7" was used to allow the
;5 S form of the (1s) shell to be adjusted. Normalized orthogonal linear combinations of these
olm single terms were found by the direct method, known as the Schmidt process, applied to these
= functions taken in the order re=3", r2e7, e7%, r2e=%, 3¢~ and e~7". With the functions in
E 8 this order it was possible to use a common radial factor for the 25 and 2 functions, another
o for the (3s) and (3p) functions, and another for an s and a p replacement. This was thought

to be very desirable when the calculation was planned, since it was intended that all the
computing would be done on a desk calculating machine, and this would have saved very
much time in the matrix multiplication for calculating the electrostatic integrals between
the orthonormal functions, but it would have been of much less value with the automatic
computation.

The root functions were tested by finding the approximate contributions of the co-detors
formed by single replacements in the root functions, and it was found that the (3p) function

PHILOSOPHICAL
TRANSACTIONS
OF
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was not very satisfactory because the contribution of the co-detor formed by replacing a (3p)
function by the (3p’) function was more than 309%,. Hence the (3p) function was modified
by adding a suitable multiple of the (3p’) function, and a corresponding alteration made in
the replacement function to keep it orthogonal to the new (3p) function. With these altera-
tions made, the p functions of the root functions and their replacement functions as given in
table 4 were obtained. In this test of the original functions the (2s) and (3s) functions had
appeared to be quite satisfactory, but in a subsidiary calculation of a He-like ion allowing
for relativistic corrections the (1s) shell was fitted better with e=% +0-03 e~7" than with e~%".
Thus the final set of s functions as given in table 3 were obtained by applying the Schmidt
process to the functions re=3, €787 0-03 e~7, 72 e, r2 ¢~ %, r* ¢ and e~ 7, taken in this order.

The only other single-electron functions to be introduced were to allow for angular
correlation in the (1s), (2p) and (3p) shells, and the functions chosen for this were re™!%,
r2e~% and r2e™" respectively for similar reasons to those given in part VIII. The radial
factor of the (1p’) function to allow for angular correlation in the (Ls) shell was chosen to
depend mainly on re~1%, since empirical tests show that to lower as much as possible the
energy of a (1s) shell depending on the factor =%, a p function with a radial factor r e=15%"
should be used. Although the (1) function was made orthogonal to the (2p) and the (3p)
functions it was not considered worth while to make it orthogonal to the other p replacement
functions, since the extra complication involved in the calculation of some of the elements
of the variational matrices was quite insignificant. Finally, the d functions to allow for
angular correlation in the (2p) and (3p) shells were chosen to depend on the radial factors
r2e~4 and r2e" respectively, since these factors are approximately the same as the radial
factors of the (2p) and (8p) functions. Also these two d functions were normalized and made
orthogonal to each other.

A stretching factor was applied to all of these single-electron functions in the same way
as was described in part VIII. The values of the stretching factors were 2, 2, (i) and () for
S, ST, Cl and Cl™ respectively.

The co-detors for the variational calculation were built up from these single-electron
functions and were chosen as described in part X. The empirical criterion used in the
present calculation was to omit the co-detors for which H? /H,,, the approximate estimate
of the energy lowering, was less than 0-005 atomic unit. The actual co-detors examined were
chosen in accordance with the approximate physical significance as discussed in part X and
comprised chiefly those obtained by single replacements in the root function to allow the
form of a shell orbital to be adjusted, and those obtained by double replacements corre-
sponding to radial or angular repulsive correlations or to interaction of configurations.

5. RESULTS AND DISCUSSION

In table 4 are given the coefficients of the co-detors in each of the wave functions, desig-
nated by the configuration of the outer electrons occurring in the root function. The
magnitude of each wave function is adjusted so that the coefficient of the root function is 1,
that is, the wave function is not normalized.

The actual vector coupling system for each separate co-detor has not been given ex-
plicitly, since this merely seems to obscure the relation to the root function. Instead, each
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set of co-detors is labelled by what substitutions are made in the root function to obtain
that particular set. Thus, for example, the set of co-detors labelled by (3p)/(3p") in the wave
function of the ground state of Cl are (1s)2(2s5)2 (2p)% (3s5)2 (3p)*0(3p") P2, where § = S!, P3
and D! In those sets of co-detors where there is more than one possible vector coupling
system to give the same overall final coupling, all the possible co-detors have been included
in that set, and these are ordered according to the alphabetic system. If (L, S)) is the first
variable pair of eigang values occurring in each co-detor, (L,, S,) the second pair, and so on,
then the co-detors are arranged so that the sets {(L;,S;) (Ly,S5,) ... Sy} are in ascending
order, regarding L, as the most significant symbol. For example, the set of co-detors labelled
(3p)%/(3d')? in the wave function of the ground state of Cl are arranged in the following
order:

PSHPPIP?, p3P22SIP2, pSPPIP?, piP2?DIP2, pSD2?PPP? and  pPD242DIP2.

TABLE 4. COEFFICIENTS Y, FOR WAVE FUNCTIONS IN THE FORM 2V, ®,

atom S S S
root function ... (35)% (3p)* P8 (35)2 (3p)* D! (35)? (3;;)4 st (35) (3p)° P}
energy e 2397012 £396-954 —~396 —'396-595
®T

()O) 1-0 1-0 1-0 1-0
(1s)/(15) —0-0050 —0-0050 —0-0050 —0-0050
(15)/(25") : —0-0837 — 00837 —0-083 6 —0-084 0
(15)/(3s") — 00142 —0-0142 —0-0144 —0-0138
(25)/(25") 0-151 6 0-1516 0-151 3 0-152 2
(25)/(35") 0-017 2 0-017 2 0-017 8 0-016 5
(35)/(25) —0-0171 —0-0170 —0-0168 —0-009 0
(35)/(35) —0-0471 —0-0472 —0-0477 —00402
(2p)/(3p") —0-1430 —0-1431 —0-143 2 —0-142 6
(2p)/(2p") 0-001 0 0-001 0 0-001 0 0-001 3
(3p)/(3p) 0-035 1 0-023 6 0-059 8 —0-006 3
—0-0191 0-048 4 — —0-0526
0-030 1 — — 0-022 1
(2p)2/(2p")? 0-0139 0-0139 0-013 9 0-013 9
0-020 4 0-020 4 - 0-020 4 0-020 5
—0-0219 —0-0219 —0-0219 —0-0220
(25) (2p)/(25) (2p") —0-0136 —0-0136 —00132 —0-0136
(3p)%/(3d")? 0-019 5 —0-0218 —0-097 6 —0-0449
0-051 4 —0-059 2 0-059 1 —0-0707
—0-0479 —0-049 0 0-056 1 0-039 1
0-055 8 0-062 1 — 0-031 2
0-043 8 — — 0-047 9
_ — — —~0-0658
(2p)/(3p) —0-0720 0-073 4 —0-0754 —0-0499
(2p)2/(2d")? —0-0235 —0-023 5 —0-0235 —0-023 6
—0-0322 —0-0322 —0-0321 —00322
0-025 1 0-025 1 0-025 0 0-0251
(35)/(3d") 0-063 0 —0-097 5 — —0-039 8

—0-0757 — — —

(3s)2/(3p)* — — —0:096 9 —
(15)2/(1s")2 —0-0037 —0-0037 —0-0037 —0-0037
(15)2/(1p")? 0-006 5 0-006 5 0-006 5 0-006 5
(36%)/(3s) (3d") — — — 0-073 8
— — — 0-116 5

Vor. 246. A. 58
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460 S. F. BOYS AND V. E. PRICE ON
TABLE 4 (cont.)
atom Cl™ Cl1 Cl S”
root function o (35)2(3p)8 82 (35)2 (3p)° P? (3s) (3p)8 S2 (35)2 (3p)° P2
energy —458-917 —458-901 —458-388 —396-934
®7’

(1) 1-0 1-0 1-0 1-0
(1s)/(Ls") — 00079 —0-007 9 —0-007 9 —0:005 1
(Ls)/(2s") —0-076 5 —0-0757 —0-076 1 —0-0845
(15)/(35) — 00158 —00166 —~0-0159 — 00132
(25)/(25") 0-1357 0-1340 0-1349 0-1533
(25)/(35") 0-0217 0-023 6 0-022 1 0-015 2
(3s)/(2s") —0-003 6 0-0189 0-0153 —0-038 8
(35)/(35") —0-0539 —0-093 8 —0-070 2 —0-007 2
(20)/(30") ~ 01135 —~0-1074 ~0-106 1 —0-150 8
(20)/(2p") —0-0386 —0-040 0 —0-040 2 0-002 6
(36)/(3p") 0-072 6 0-006 3 —0-0059 00277
—_ —0-0009 — —0-102 4
— —0-0057 — 0-070 1
(2p)%/(2p")? 0-0130 0-0129 0-0129 0-0139
0-0187 0-018 6 0-018 6 0-020 5
—0-0203 —0-020 2 —0-020 2 —0-0220
(25) (2p)](2s") (2p") —-0-0167 —0-0167 —0-016 8 —0-0137
(3p)%/(3d")? —0-0809 —0-048 5 —0-0847 —0-045 2
—0-097 6 —0-0723 —0-0897 —0-066 5
0-086 1 0-0417 0-0859 0-038 8
— 0-0331 — 0-030 7
— 0-0540 —— 0-050 2
— —0-0708 — —0-064 9
(20)/(3p) — —0-0367 — —0-0525
(2p)?/(2d")? —0-022 5 —0-022 4 —0:022 5 —0-023 5
—0-030 8 —0-030 8 —0-030 8 —0-032 2
0-023 9 0-023 9 0-023 9 0-0251
(35)/(3d") - —-0-0791 — —0-0737

(35)%/(3p)? — — — —
(15)2/(1s")2 —0-003 6 --0-003 6 —0-003 6 —0-0037
(15)2/(1p")?2 0-006 1 0-006 1 0-006 1 0-006 5

(3p)2/(35) (3d") — — 01883 —

There is one exception to the rule of including all the possible vector coupling systems,
and this is concerned with the co-detors (3s)/(3d’). In every case in which there remains
one (3s) function to be coupled with the (34") function, this coupling is D3 and not D!. This
other coupling possibility is not included because the contributions of such co-detors with
a D! coupling are very much smaller than those with a D3 coupling.

The only known reliable single test which can be applied to any wave function is to
compare the total energy of the wave function with the corresponding experimental energy
or the energy of a previously calculated wave function for the same state, using the well-
known minimum property of the energy. Unfortunately, it is not possible to apply this
test to the wave functions given in table 4, because the total experimental energies of the
atoms are not known, and there have not been any previously calculated values of these
energies. The only previous approximations to any of these wave functions are some for
the ground states of Cl and Cl™ obtained by self-consistent field methods (see Hartree,
Kronig & Petersen (1934) and Hartree & Hartree (1936)), but the energies of these wave
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functions have not been calculated. Thus, the only possible tests which can be applied
immediately to the wave functions are those depending on the difference of the energies
of the various wave functions, comparing these with the experimental differences. The
results of this comparison are given in table 5.

TABLE 5
energy differences
wave functions. calculated experimental‘
CL(P?)-Cl™ (SY) 0-016 0-144
Cl(82)-Cl1(P?) 0-513 —
S(P3)-S™(P?) —0-078 —
S(D)-S(P3) 0-058 0-043
S(S1)-S(P3) 0-136 0-102
S(P3)-S(P?) 0-407 0-332

Although the electron affinity of Cl has the correct sign, it is very small, and this suggests
that the negative value for the electron affinity of S, which implies that the ion S™ is not
stable, is unreliable. It is probable that the main errors in these values of the electron
affinities lie in the wave functions of the ground states of the negative ions, and that to
improve these significantly one would have to introduce extra single-electron functions to
adjust the orbitals of the outer electrons.

The calculated difference between the S? state and the ground state of Cl indicates that
the S? state is just in the spectral continuum of the atom, since the ionization potential of
Cl is 0-485 atomic unit. However, it is generally found that variational wave functions of
excited states are less accurate than wave functions of the ground states, as is shown here
by the predicted energy differences between the various states of S. Thus one would expect
that the true value of the energy difference between the S? state and the ground state of Cl
would be less than 0-513 and probably less than 0-485, in which case this level would occur,
in the discrete spectrum of Cl. This level has not, however, been observed.

The ratio of the differences of the energies of the lowest three states of S can also be
compared with the theoretical ratio which one would obtain by any method such as the
self-consistent field method in which the approximate wave function is given by a single
co-detor. The values for single co-detors can be easily evaluated from the theory of vector
coupling, as shown by Condon & Shortley (1935). The comparison given in table 6 shows
the increased accuracy of the wave functions formed from the several co-detors.

TABLE 6. VALUEs OF THE RATIO (D!-P3):(S!-P3) OF THE ENERGY
DIFFERENCES OF THE THREE LOWEST STATES OF SULPHUR

experimental value 0-422
theoretical value from the wave functions in the form XY, ®, 0-427
theoretical value from wave functions in the form of single co-detors 0-400

6. CONCLUSIONS

The direct result of this investigation is to provide eight wave functions, each of which
is the most accurate known for the particular stationary state. For six of these states there
have been no comparable functions, and for none of these states has there been a com-
parable previous energy prediction. In the present type of calculation the total energy is

found in the process of calculating the wave function, and it is considered that these values
58-2
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will be very useful for comparing the accuracy of future calculations of wave-function
approximations. In addition, the form of these wave functions is probably the most suitable,
of any at present available, for the prediction of atomic physical properties.

The general intermediate information found in this investigation should also be of
appreciable value in the further use of converging methods of calculation for other states
in the second and higher chemical periods. The investigation has been performed on a
broad basis and should provide considerable guidance in choice of the elementary functions
and of the linear combinations for other stationary states for calculations of increased
accuracy for those considered here. The relativistic effects have only been introduced as
explicit corrections, but it appears that this will be sufficient for practical standards of
accuracy for the near future.

Finally, assessed from a more general point of view, this investigation contributes to the
general development of practical converging methods of calculation of atomic and mole-
cular wave functions and the physical properties dependent on these. It is desirable in
each particular investigation that some of the many difficulties of the general problem be
resolved so that these may be treated by stereotyped procedures in subsequent investiga-
tions. The adaption of the calculation of the elementary integrals and of the integrals of the
orthonormal linear combinations to the EDSAC, and also the general systematic pro-
cedures developed for the large arrays of numbers are all advances of this nature. In par-
ticular they should reduce significantly the necessary labour for subsequent investigations
such as on the (3d) shell of the next chemical period and on simple molecules, both of which
present considerable difficulties.

The authors would like to express their particular indebtedness to Dr M. V. Wilkes and
to many members of Cambridge Mathematical Laboratory for assistance and suggestions
on preparation of programmes and to Mr L. A. G. Dresel for the use of his systematic
programme for the matrix contraction procedure. V. E.P. is indebted to the Department
of Scientific and Industrial Research for a maintenance grant.
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